Vernier Software and Technology
Vernier Software & Technology

Fractional Distillation

Figure from experiment 8 from Chemistry with Vernier


An example of a simple distillation is the separation of a solution of salt and water into two separate pure substances. When the salt water solution is heated to boiling, water vapor from the mixture reaches the condenser and the cold water circulating around the inside tube causes condensation of water vapor into droplets of liquid water. The liquid water is then collected at the lower end of the condenser. The non-volatile salt remains in the flask.

In this experiment, the initial mixture you distill contains two volatile liquids: ethanol and water. In this distillation, both of the liquids will evaporate from the boiling solution. Ethanol and water have normal boiling temperatures of 79°C and 100°C, respectively. One objective of the experiment is to observe what happens when a liquid-liquid mixture is heated and allowed to boil over a period of time. Throughout the distillation, volumes of distillate, called fractions, will be collected. The percent composition of ethanol and water in each fraction will be determined from its density. Water has a density of 1.00 g/cm3 (at 20°C) and ethanol has a density of 0.79 g/cm3 (at 20°C). The fractions you collect will have densities in this range.


In this experiment, you will

  • Observe what happens when a liquid-liquid mixture is heated and allowed to boil over a period of time.
  • Determine percent composition of ethanol and water in the fraction from its density.

Sensors and Equipment

This experiment features the following Vernier sensors and equipment.

Option 1

Option 2

Additional Requirements

You may also need an interface and software for data collection. What do I need for data collection?

Standards Correlations

See all standards correlations for Chemistry with Vernier »

Chemistry with Vernier

See other experiments from the lab book.

1Endothermic and Exothermic Reactions
2Freezing and Melting of Water
3Another Look at Freezing Temperature
4Heat of Fusion of Ice
5Find the Relationship: An Exercise in Graphing Analysis
6Boyle's Law: Pressure-Volume Relationship in Gases
7Pressure-Temperature Relationship in Gases
8Fractional Distillation
9Evaporation and Intermolecular Attractions
10Vapor Pressure of Liquids
11Determining the Concentration of a Solution: Beer's Law
12Effect of Temperature on Solubility of a Salt
13Properties of Solutions: Electrolytes and Non-Electrolytes
14Conductivity of Solutions: The Effect of Concentration
15Using Freezing Point Depression to Find Molecular Weight
16Energy Content of Foods
17Energy Content of Fuels
18Additivity of Heats of Reaction: Hess's Law
19Heat of Combustion: Magnesium
20Chemical Equilibrium: Finding a Constant, Kc
21Household Acids and Bases
22Acid Rain
23Titration Curves of Strong and Weak Acids and Bases
24Acid-Base Titration
25Titration of a Diprotic Acid: Identifying an Unknown
26Using Conductivity to Find an Equivalence Point
27Acid Dissociation Constant, Ka
28Establishing a Table of Reduction Potentials: Micro-Voltaic Cells
29Lead Storage Batteries
30Rate Law Determination of the Crystal Violet Reaction
31Time-Release Vitamin C Tablets
32The Buffer in Lemonade
33Determining the Free Chlorine Content of Swimming Pool Water
34Determining the Quantity of Iron in a Vitamin Tablet
35Determining the Phosphoric Acid Content in Soft Drinks
36Microscale Acid-Base Titration

Experiment 8 from Chemistry with Vernier Lab Book

<em>Chemistry with Vernier</em> book cover

Included in the Lab Book

Vernier lab books include word-processing files of the student instructions, essential teacher information, suggested answers, sample data and graphs, and more.

Buy the Book

Dev Reference: VST0077

Go to top