Vernier Software and Technology
Vernier Software & Technology


Figure from experiment 24 from Physics with Vernier


The charge q on a capacitor’s plate is proportional to the potential difference V across the capacitor. We express this relationship with

Cannot create image: V = \frac{q}{C}

where C is a proportionality constant known as the capacitance. C is measured in the unit of the farad, F, (1 farad = 1 coulomb/volt).

If a capacitor of capacitance C (in farads), initially charged to a potential V0 (volts) is connected across a resistor R (in ohms), a time-dependent current will flow according to Ohm’s law. This situation is shown by the RC (resistor-capacitor) circuit below when the switch is connecting terminals 33 and 34.

As the charge flows, the charge q on the capacitor is depleted, reducing the potential across the capacitor, which in turn reduces the current. This process creates an exponentially decreasing current, modeled by

Cannot create image: V(t) = V_{0}e^{-\frac{t}{RC}}

The rate of the decrease is determined by the product RC, known as the time constant of the circuit. A large time constant means that the capacitor will discharge slowly.

In contrast, when the capacitor is charged, the potential across it approaches the final value exponentially, modeled by

Cannot create image: V(t) = V_{0} \left( 1-e^{-\frac{t}{RC}} \right)

The same time constant, RC, describes the rate of charging as well as discharging.


  • Measure an experimental time constant of a resistor-capacitor circuit.
  • Compare the time constant to the value predicted from the component values of the resistance and capacitance.
  • Measure the potential across a capacitor as a function of time as it discharges and as it charges.
  • Fit an exponential function to the data. One of the fit parameters corresponds to an experimental time constant.

Sensors and Equipment

This experiment features the following Vernier sensors and equipment.

Additional Requirements

You may also need an interface and software for data collection. What do I need for data collection?

Standards Correlations

See all standards correlations for Physics with Vernier »

Physics with Vernier

See other experiments from the lab book.

1Graph Matching
2ABack and Forth Motion
2BBack and Forth Motion
3ACart on a Ramp
3BCart on a Ramp
4ADetermining g on an Incline
4BDetermining g on an Incline
5Picket Fence Free Fall
6Ball Toss
7Bungee Jump Accelerations
8AProjectile Motion (Photogates)
8BProjectile Motion (Projectile Launcher)
9Newton's Second Law
10Atwood's Machine
11Newton's Third Law
12Static and Kinetic Friction
13Air Resistance
14Pendulum Periods
15Simple Harmonic Motion
16Energy of a Tossed Ball
17Energy in Simple Harmonic Motion
18AMomentum, Energy and Collisions
18BMomentum, Energy and Collisions
19AImpulse and Momentum
19BImpulse and Momentum
20Centripetal Accelerations on a Turntable
21Accelerations in the Real World
22Ohm's Law
23Series and Parallel Circuits
25The Magnetic Field in a Coil
26The Magnetic Field in a Slinky
27Electrical Energy
28APolarization of Light
28BPolarization of Light (Rotary Motion Sensor)
29Light, Brightness and Distance
30Newton's Law of Cooling
31The Magnetic Field of a Permanent Magnet
32Sound Waves and Beats
33Speed of Sound
34Tones, Vowels and Telephones
35Mathematics of Music

Experiment 24 from Physics with Vernier Lab Book

<i>Physics with Vernier</i> book cover

Included in the Lab Book

Vernier lab books include word-processing files of the student instructions, essential teacher information, suggested answers, sample data and graphs, and more.

Buy the Book

Dev Reference: VST0304

Go to top