Vernier Software and Technology
Vernier Software & Technology

Spring Thing - Newton's Second Law

Figure from experiment 7 from Real-World Math with Vernier


If you push or pull an object (and yours is the only force on the object), the way it changes its motion depends on two things: the force you apply, and the object’s mass. Sir Isaac Newton was the first to recognize that an object’s acceleration is directly proportional to the total force applied (the larger the force, the more rapidly it speeds up or slows down), and inversely proportional to its mass (massive objects have a greater tendency to resist efforts to make them speed up or slow down). Stated mathematically, that is F = ma where F is the force applied to the object, m is its mass, and a is its acceleration. This expression is known as Newton’s second law.

In this activity, you will use a force sensor and a motion detector to record force and acceleration data for an object (called the bob) moving up and down hanging from a light spring. These data will be used to test the mathematical relationship of Newton second law.


  • Collect force and motion data for a bob moving at the end of a light spring.
  • Compare the force and acceleration data to test Newton's second law.
  • Use Newton's second law to estimate the mass of an object.

Sensors and Equipment

This activity features the following Vernier sensors and equipment.

Additional Requirements

You may also need an interface and software for data collection. What do I need for data collection?

Standards Correlations

See all standards correlations for Real-World Math with Vernier »

Real-World Math with Vernier

See other experiments from the lab book.

1Walk the Line - Straight Line Distance Graphs
2Making Cents of Math: Linear Relationship between Weight and Quantity
3Pool Plunge - Linear Relationship between Water Depth and Pressure
4Funnel Volumes - Volume and Weight
5Keep It Bottled Up - Rates of Pressure Increase
6Mix It Up - Mixing Liquids of Different Temperatures
7Spring Thing - Newton's Second Law
8Stretch It to the Limit - The Linear Force Relation for a Rubber Band
9What Goes Up - Position and Time for a Cart on a Ramp
10That's the Way the Ball Bounces - Height and Time for a Bouncing Ball
11Walk This Way - Definition of Rate
12Velocity Test - Interpreting Graphs
13From Here to There - Applications of the Distance Formula
14Under Pressure - The Inverse Relationship between Pressure and Volume
15Light at A Distance - Distance and Intensity
16Chill Out: How Hot Objects Cool
17Charging Up, Charging Down - Charging a Capacitor
18Bounce Back - The Pattern of Rebound Heights
19Sour Chemistry - The Exponential pH Change
20Swinging Ellipses - Plotting an Ellipse
21Lights Out! - Periodic Phenomena
22Tic, Toc: Pendulum Motion
23Stay Tuned: Sound Waveform Models
24Up And Down: Damped Harmonic Motion
25How Tall? Describing Data with Statistical Plots
26And Now, the Weather - Describing Data with Statistics
27Meet You at the Intersection: Solving a System of Linear Equations
28Titration Curves: An Application of the Logistic Function
29Clock Design: Period and Length of a Simple Pendulum
30Graph It in Pieces: Piecewise Defined Functions
31Stepping to the Greatest Integer: The Greatest Integer Function
32Crawling Around: Parametric Plots

Activity 7 from Real-World Math with Vernier Lab Book

<i>Real-World Math with Vernier</i> book cover

Included in the Lab Book

Vernier lab books include word-processing files of the student instructions, essential teacher information, suggested answers, sample data and graphs, and more.

Buy the Book

Dev Reference: VST0327

Go to top